quarta-feira, 19 de outubro de 2016

Nutrition and Renal Disease

Make sustainable dietary changes. Sign up for the free 21 Day Vegan Kickstart. Participants receive daily messages for a step-by-step diet makeover, including recipes and nutrition webcasts. Go >
21-Day Vegan Kickstart

Nutrition and Renal Disease

The kidneys’ job is to keep the body’s fluids, electrolytes, and organic solutes in a healthy balance. Their functional units are the million or so nephrons in the renal cortex which filter most constituents of the blood other than red blood cells and protein, reabsorb needed substances, secrete hydrogen ions to maintain acid-base balance, and secrete wastes.1
Urine formation consists of three basic processes: glomerular filtration, tubular secretion, and tubular reabsorption. Several disease conditions can interfere with these functions. Inflammatory and degenerative diseases can involve the small blood vessels and membranes in the nephrons. Urinary tract infections and kidney stones can interfere with normal drainage, causing further infection and tissue damage. Circulatory disorders, such as hypertension, can damage the small renal arteries. Other diseases, such as diabetes, gout, and urinary tract abnormalities can lead to impaired function, infection, or obstruction. Toxic agents such as insecticides, solvents, and certain drugs may also harm renal tissue.

Nephrotic Syndrome

In nephrotic syndrome, an injury to the glomerular basement membrane causes an increased glomerular permeability, resulting in the loss of albumin and other plasma proteins in the urine. Urinary protein losses greater than 3-3.5 grams per day usually indicate nephrotic syndrome.
Although albumin synthesis in the liver is increased in nephrotic syndrome, it is not enough to compensate for losses in the urine. The loss of albumin leads to edema.
Low albumin levels also trigger cholesterol and lipoprotein synthesis in the liver, resulting in hyperlipidemia. At the same time, hepatic catabolism of serum lipoproteins is reduced and urinary excretion of HDL is increased. These lipid abnormalities can be exacerbated by medications often used to treat nephrotic syndrome, such as steroids, diuretics, and anti-hypertensive agents.

Diet for Nephrotic Syndrome

A well-planned diet can replace lost protein and ensure efficient utilization of ingested proteins through provision of adequate calories. Dietary changes can also help control hypertension, edema, and hyperlipidemia, and slow the progression of renal disease.
Protein: High-protein diets are not recommended as they may encourage damage to the nephrons, leading to a progression of renal insufficiency. Since albumin losses in nephrotic patients are due to increased catabolism, rather than a reduction in protein synthesis, low-protein diets, which decrease catabolism, may be more beneficial.2
The optimal amount of dietary protein necessary to prevent protein catabolism and progression of renal disease has not been established. A common recommendation is 0.6 grams of protein per kilogram of ideal body weight, adjusted depending on the glomerular filtration rate and nutritional status, plus gram-for-gram replacement of urinary protein losses.
A vegetarian diet, often used for lipid-lowering, also offers a convenient way to provide adequate, but not excessive, protein. In a 1992 study, a group of 20 nephrotic syndrome patients were put on a vegetarian diet for eight weeks. Protein intake averaged 0.7 grams per kilogram per day, which was more appropriate to their needs than the 1.15 grams per kilogram provided in their usual diet.3
Sodium and Fluid: A limit on sodium of 1-3 grams per day is usually recommended to control edema and hypertension. Diuretics may also be used. A fluid restriction is not warranted unless renal failure occurs.
Lipids: A diet low in saturated fat and cholesterol, combined with loss of excess weight, is recommended to reduce the risk of cardiovascular disease. Many clinicians recommend limiting cholesterol to less than 300 milligrams per day and fat intake to 30 percent of calories. However, research has shown that such recommendations lead to only minimal lipid lowering. As noted in detail in Section 1, low-fat vegetarian diets are much more effective for lipid control and usually lead to the reversal of atherosclerotic disease. Cholesterol-lowering drugs can be used adjunctively if needed.
An eight-week trial in 13 men and 7 women with hyperlipidemia and nephrotic syndrome showed that a vegetarian diet significantly reduced cholesterol, triglycerides, and phosphorus.3
Energy: Calorie intake should be adequate to achieve and maintain ideal body weight and maintain protein stores. Foods rich in complex carbohydrates should provide the majority of calories.
Supplements: Patients with nephrotic syndrome are often low in B vitamins and zinc, and can benefit from supplements. In addition, since a significant portion of serum calcium is protein-bound, it tends to be low when serum proteins are reduced. No modification is routinely needed for potassium, but potassium losses due to secondary hyperaldosteronism may require replacement.4
The following clinical values should be monitored:4
  • Serum albumin and total protein
  • Urinary protein
  • Glomerular filtration rate
  • Dietary protein, fat, and cholesterol
  • Daily weights
  • Serum lipids

Acute Renal Failure

Acute renal failure, manifested by oliguria or anuria, usually occurs suddenly and is often reversible. It is marked by a reduction in the glomerular filtration rate and a modification in the kidneys ability to excrete metabolic wastes.
Its causes can be prerenal, intrinsic, and postrenal. Prerenal causes include severe dehydration and circulatory collapse. Causes intrinsic to the kidney include acute tubular necrosis, nephrotoxicity, vascular disorders, and acute glomerulonephritis. Obstructive (postrenal) causes include benign prostatic hypertrophy and bladder or prostate cancer.1
The most common form of intrinsic renal disease is acute tubular necrosis, accounting for about 75 percent of cases. Acute tubular necrosis may be due to posttraumatic or surgical shock or to the toxic effects of drugs, metals, or organic compounds.
Nutrition strategies in acute tubular necrosis vary depending on its stage. During phase one, oliguria, less than 400 milliliters of urine is produced per day. This phase usually lasts one to three weeks. Signs and symptoms include nausea, vomiting, fluid overload, and elevation of BUN, creatinine, phosphorus, and potassium levels. Dialysis may be needed during this stage to reduce acidosis, control hyperkalemia, and correct uremia.
The diuretic phase of acute tubular necrosis lasts one to two weeks, and is characterized by increased urine output and a return of the ability to eliminate wastes. Fluid and electrolyte balance should be monitored and replacements made as necessary. The convalescent phase occurs over the next two to six months.1,2

Diet in Acute Renal Failure

Diet plays a critical role in the care of patients with acute renal failure. Clinicians should plan diets with an eye toward the possibility of uremia, metabolic acidosis, fluid and electrolyte imbalances, infection, and tissue destruction. Nutritional support of dialysis will be discussed below in the section on chronic renal failure.
Protein: A low-protein diet (0.5-0.6 grams per kilogram) is recommended initially. Protein may be increased in the diet as the glomerular filtration rate increases to normal. If dialysis is initiated, the protein level may be increased to 1.0-1.5 grams per kilogram per day if necessary to compensate for protein losses in the dialysate.
Calories: Calorie needs are generally elevated (35-50 kilocalories per kilogram) in order to provide positive nitrogen balance under stressful conditions. As protein is usually quite restricted, calorie needs may be met by providing greater amounts of carbohydrate and fat in the diet.
Sodium and Fluid: Sodium is restricted depending on urinary excretion, edema, serum sodium levels, and dialysis needs. During the oliguric phase, sodium may be restricted to 500-1000 milligrams per day, and fluid requirements are based on replacing losses via urine, vomitus, and diarrhea, plus approximately 500 milliliters per day.
Potassium: Potassium requirements vary depending on hemodynamic status and the degree of hypermetabolism due to stress, infection, or fever. High potassium levels are treated by dialysis or with kayexalate, an exchange resin which substitutes sodium for potassium in the gastrointestinal tract. During the oliguric phase, potassium may be restricted to 1,000 milligrams per day.3

Chronic Renal Failure

Approximately 90 percent of cases of end-stage renal disease are attributable to diabetes mellitus, glomerulonephritis, or hypertension. Kidney failure results in fluid and electrolyte imbalances, the build up of nitrogenous wastes, and reduced ability to produce renal hormones. The two treatment options are transplantation or dialysis.1
Mild renal insufficiency is defined as 40-80 percent of renal function. Moderate insufficiency is defined as 15-40 percent, and severe renal insufficiency is below these figures.2

Diet in Chronic Renal Failure

Low-protein diets may slow the progression of mild and moderate renal insufficiency. Therapeutic diets using plant sources of protein are more effective in delaying the progression of renal insufficiency, compared to those using animal proteins.5
Vegan (pure vegetarian) diets have been shown to provide adequate protein. A study of 22 patients with mild renal failure compared a vegan diet to a conventional low-protein diet. All patients were followed for at least six months. There was no sign of protein insufficiency and inorganic phosphorus levels remained normal.6

Dialysis Patients

Dialysis changes dietary needs. Patients undergoing typical hemodialysis, involving about three treatments per week, follow diets that are restricted in protein, sodium, potassium, phosphorus, and fluid. Patients on continuous ambulatory peritoneal dialysis, involving several dialysate exchanges per day, can be more liberal in protein, sodium, potassium, and fluid intake.
Sodium: Sodium intake must be modified to prevent hypertension, congestive heart failure, and pulmonary edema. Limiting intake will help avoid thirst and maintain acceptable fluid balance. Restrictions range from 1,000-3,000 milligrams per day with hemodialysis and 2,000-4,000 milligrams per day for peritoneal dialysis. Major salt sources are described below.
Fluid: Fluid consumption should be controlled to avoid congestive heart failure, pulmonary edema, hypertension, and swelling of the legs and feet. Fluid allowances are 1,000-1,5000 milliliters per day and are based on urine output and type of dialysis.
Protein: Protein requirements range from 1.1-1.5 grams per kilogram, depending on the type of dialysis used and the patient’s nutritional status. It is important to ensure sufficient protein to maintain visceral protein stores, but to avoid excesses that could lead the accumulation of nitrogenous waste products in the blood (uremia).
Phosphorus: Kidney failure causes high levels of phosphorus to build up in the blood and disrupts calcium/phosphorus balance. Elevated phosphorus levels can lead to metastatic calcification (soft tissue calcification), secondary hyperparathyroidism, and renal osteodystrophy. Recommended intakes usually range from 800-1,000 milligrams per day with hemodialysis and less than 1,200 milligrams per day with periotoneal dialysis.
Potassium: Potassium restrictions depend on serum potassium levels, the type of dialysis, medications, and residual renal function. Patients on hemodialysis are usually restricted to 2,000-3,000 milligrams per day to prevent hyperkalemia between treatments. Patients on peritoneal dialysis may follow a more liberal dietary potassium intake, as potassium is lost in the dialysate solution during daily exchanges.

Kidney Stones

About 12 percent of Americans develop a kidney stone at some point in their lives. Stones usually result from the crystallization of calcium (which originally came in foods or supplements) and oxalate, a part of many plant foods. Some people have a tendency to lose excessive amounts of calcium or oxalate through their kidneys, and they have a greater likelihood of a stone.7-10 Kidney stones can also form from uric acid, which is a breakdown product of protein, or from struvite (ammoniomagnesium phosphate) or cystine.
The prevalence of kidney stones is three times higher in men than women, and is higher among Caucasians than Asians or African Americans, for reasons that are not clear. They are especially likely to strike between the ages of 40 and 60.
Nutritional steps are important in preventing stones and can also help prevent recurrences, which is important given that 30-50 percent of people diagnosed with a renal stone have a recurrence within five years.
Preventing stones is like keeping a salt crystal from forming in a glass of salty water. You can either reduce the concentration of salt or add more water. Epidemiologic studies have shown that certain parts of the diet help reduce the amount of calcium that filters into the urine. It is a simple matter to put these factors to work clinically.

Calcium oxalate 72%
Uric acid 23%
Ammoniomagnesium phosphate (struvite) 5%
Cystine <1%

Protective Foods

Certain parts of the diet clearly help reduce the risk. The first is no surprise.
Water. Water dilutes the urine and keeps calcium, oxalates, and uric acid in solution. In research studies, those subjects whose total fluid intake (from all sources) over 24 hours was roughly 2.5 liters, the risk of a stone was about one-third less than that of subjects drinking only half that much.7 (They do not need to drink 2.5 liters of water per day; rather this is the total fluid consumption, including juices, soups, etc.) Patients need to understand that their thirst sense can lag behind their hydration status, and they may need to develop a routine for extra water consumption.
High-Potassium Foods. A study of 46,000 men conducted by Harvard University researchers found that a high potassium intake can cut the risk of kidney stones in half. Potassium helps the kidneys retain calcium, rather than sending it out into the urine. Potassium supplements are not generally necessary. Rather, a diet including regular servings of fruits, vegetables, and beans supplies plenty of potassium.
Calcium. Although most stones contain calcium, the calcium in foods does not necessarily contribute to stones. Calcium supplements taken between meals may increase the risk of stones, because about 8 percent of any extra dietary calcium passes into the urine.9,11 On the other hand, calcium consumed with meals has the opposite effect, reducing the risk of stones. The reason, apparently, is that calcium binds to oxalates in foods and holds them in the digestive tract, rather than allowing them to be absorbed.
Caffeine. Caffeinated beverages reduce the risk of stones. Caffeine’s diuretic effect causes the loss of both water and calcium, but the water loss is apparently the predominant effect. Similarly, alcoholic beverages are associated with a reduced risk of kidney stones, again presumably due to a diuretic effect. This is not a compelling reason to drink either coffee or alcohol, but their diuretic actions do present this advantage.

Problem Foods

Animal Protein. Animal proteins cause calcium to be leached from the bones and excreted in the urine where it can form stones. Diets rich in animal proteins also increase uric acid excretion. In a controlled research study, published in the American Journal of Clinical Nutrition, research subjects on a diet eliminating animal protein had less than half the calcium loss that they had on their baseline diet.12
The Harvard study mentioned earlier found that even a modest increase in animal protein, from less than 50 grams to 77 grams per day, was associated with a 33 percent increased risk of stones in men.7 The same is true for women. The Nurses’ Health Study, a long-term study of health factors in a large group of women, revealed an even greater risk of stones from animal protein than was found in previous studies in men.9
The association between animal proteins and stones probably relates both to the amount of protein they contain and to their content of the sulfur-containing amino acids. In particular, the sulfur in cystine and methionine is converted to sulfate, which tends to acidify the blood. As a part of the process of neutralizing this acid, bone is dissolved, and bone calcium ends up in the urine. Meats and eggs contain two to five times more of these sulfur-containing amino acids than are found in grains and beans.11,13
Between 1958 and the late 1960s, there was a sharp increase in the incidence of kidney stones in Great Britain. During that period, there was no substantial change in the amount of calcium or oxalate-containing foods consumed. However, the consumption of vegetables decreased, and the use of poultry, fish, and red meat increased. Statistical analyses showed a strong relationship between the incidence of stones and animal protein consumption.14
Sodium. Sodium increases the passage of calcium through the kidney and increases the risk of stones.9 When people cut their salt (sodium chloride) intake in half, they reduce their daily need for calcium by about 160 milligrams.15
Plants of any kind—grains, vegetables, legumes, and fruits—contain almost no sodium at all unless it is added during canning or other processing. Dairy products and meats contain more salt than plant products, and table salt, frozen meals, and canned and snack foods are the highest-sodium food products. For more information, see the sodium/potassium chart in Section 5.
Sugar. Sugar accelerates calcium losses through the kidney.16 In the Nurses’ Health Study, those who consumed, on average, 60 grams or more of sugar (sucrose) per day had a 50 percent higher risk of stones than those who consumed only about 20 grams.9

Candy bar (2 ounces) 22-35
Cookies (3)
Corn flakes (1 cup, 28 grams) 2
Frosted corn flakes (1 cup, 41 grams) 17
Crackers (5) 1
Fruit cocktail (1/2 cup, 124 grams) 14
Grape jam (1 tablespoon) 13
Ice cream (1/2 cup, 106 grams) 21
Soda (12 ounces)
White bread (2 slices) 1
Source: package information
Climate. Kidney stones are also more common in warm climates, presumably because perspiration leads to dehydration and a more concentrated urine, and because sunlight increases the production of vitamin D in the skin which, in turn, increases calcium absorption from the digestive tract.17
Surprisingly, oxalate-rich foods, such as chocolate, nuts, tea, and spinach, are not associated with a higher risk of renal stones,7 nor is vitamin C, even though it can be converted to oxalate. A large study of men taking vitamin C supplements found that they had no more kidney stones than men who do not take them.8

Helping Patients Avoid Kidney Stones

Here are simple steps to help your patients avoid kidney stones.
  1. Encourage patients to drink plenty of water or other fluids, staying ahead of their thirst.
  2. Diets including generous amounts of vegetables, fruits, and beans are rich in potassium and very low in sodium.
  3. If you prescribe calcium supplements, encourage patients to take them with meals, rather than between meals.
  4. Encourage patients to avoid animal products. Their proteins and sodium content increase the risk of stones.
  5. Patients should keep salt and sugar use modest.

Cranberry Juice: An Old Remedy Is Clinically Tested

Cranberry juice has long been used as a folk remedy for urinary infections. A 1994 report in the Journal of the American Medical Association showed that it does indeed have at least a preventive effect. In a test involving 153 elderly women in Boston, half the subjects drank 300 milliliters (about one and one-quarter cups) of cranberry juice cocktail each day, using the same bottled beverage that is commonly sold in grocery stores.18 The other subjects consumed a drink that looked and tasted like cranberry juice, but had no real juice in it.
Over the next six months, urine samples were collected and tested for signs of bacteria. The women consuming cranberry juice had only 42 percent as many urinary infections as the control group. The number of cases that had to be treated by antibiotics was also only about half, which is a real advantage, since antibiotics can sometimes lead to yeast infections and other problems. It takes about four to eight weeks for the preventive effect to be seen.
The explanation for the effect of cranberry juice is probably not an acidification of the urine, because the placebo drink also reduced urinary pH. Rather, cranberries contain a substance that stops bacteria from being able to attach to cells, and this is probably true whether the cranberry juice reaches the bacteria in the digestive tract or the urinary tract. Substances that interfere with bacterial adhesion have also been found in blueberry juice, but not in orange, grapefruit, pineapple, mango, or guava juice.
1. Mahan LK, Arlin M. Krause’s Food, Nutrition, and Diet Therapy. W.B. Saunders, Philadelphia, 1992.
2. The American Dietetic Association. Handbook of Clinical Dietetics, second edition. Yale University Press, 1992.
3. D’Amico G, Gentile MG, Manna G, et al. Effect of vegetarian soy diet on hyperlipidemia in nephrotic syndrome. Lancet. 1992;339:1131-1134.
4. The American Dietetic Association. Manual of Clinical Dietetics, fifth edition. American Dietetic Association, Chicago, 1996.
5. Gretz N, Meisinger M, Strauch M. Does a low protein diet really slow down the rate of progression of chronic renal failure? Blood Purif. 1989;7:33:33-38.
6. Barsotti G, Morelli E, Cupisti A, Meola M, Dani L, Giovannetti S. A low-nitrogen, low-phosphorus vegan diet for patients with chronic renal failure. Nephron. 1996;74:390-394.
7. Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med. 1993;328:833-838.
8. Curhan GC, Willett WC, Rimm EB, Spiegelman D, Stampfer MJ. Prospective study of beverage use and the risk of kidney stones. Am J Epidemiol. 1996;143:240-247.
9. Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Int Med. 1997;126:497-504.
10. Soucie JM, Thun MJ, Coates RJ, McClellan W, Austin H. Demographic and geographic variability of kidney stones in the United States. Kidney Int. 1994;46:893-899.
11. Lemann J. Composition of the diet and calcium kidney stones. N Engl J Med. 1993;328:880-882.
12. Remer T, Manz F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am J Clin Nutr. 1994;59:1356-1361.
13. Breslau NA, Brinkley L, Hill KD, Pak CYC. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J Clin Endocrinol. 1988;66:140-146.
14. Robertson WG, Peacock M, Hodgkinson A. Dietary changes and the incidence of urinary calculi in the U.K. between 1958 and 1976. J Chron Dis. 1979;32:469-476.
15. Nordin BEC, Need AG, Morris HA, Horowitz M. The nature and significance of the relationship between urinary sodium and urinary calcium in women. J Nutr. 1993;123:1615-1622.
16. Lemann J Jr, Adams ND, Gray RW. Urinary calcium excretion in human beings. N Engl J Med. 1979;301:535-541.
17. Soucie JM, Coates RJ, McClellan W, Austin H, Thun MJ. Relation between geographic variability in kidney stones prevalence and risk factors for stones. Am J Epidemiol. 1996;143:487-495.
18. Avorn J, Monane M, Gurwitz JH, Glynn RJ, Choodnovskiy I, Lipsitz LA. Reduction of bacteriuria and pyuria after ingestion of cranberry juice. JAMA. 1994;271:751-754.

Foodservice Update

Healthy Tips and Recipes for Institutions from The Vegetarian Resource Group

Menu Selection for Vegan Renal Patients

A proper renal diet is extremely important for patients with chronic kidney failure. Many health care professionals have shown that a carefully planned vegetarian diet is adequate in managing chronic kidney failure.
It is vital that a renal patient's food and fluid intake be overseen by a nephrologist and a registered dietitian familiar with vegan diets. These professionals can help manage kidney disease with appropriate vegan food and fluid choices. The information in this article is not designed to replace consultation with medical doctors and registered dietitians. This article provides general guidelines and information about vegan diets that can be used in menu planning for people with chronic kidney disease, stage 2 or 3, in conjunction with consultation with health care professionals who treat people with kidney disease.
In kidney disease, nutrition management focuses on decreasing waste products built up from digested foods. The goals for planning a vegan renal diet, as for any other renal diet, are to:
  • Obtain the appropriate amount of protein to meet protein needs while minimizing waste products in the blood
  • Maintain sodium, potassium, and phosphorus balance
  • Avoid excessive fluid intake to prevent overload
  • Ensure adequate nutrition
The information provided in this article is meant as a very general guideline for patients that have at least 40-50 percent normal kidney function (chronic kidney disease, stage 2 or 3) and who are not currently receiving dialysis. For patients with lower kidney function or who are receiving dialysis, very individual diet planning must be done. All renal patients need to be closely monitored, with regular blood and urine testing.

Vegan Protein

Renal patients need to limit the amount of protein in their daily diets. For this reason, the protein in the diet needs to be high-quality protein. Very generally, depending on individual ability and needs, 0.8 gram of protein per kilogram of body weight is recommended per day. This translates to approximately 2 ounces of pure protein per day for a 140-pound person.
High-quality vegan protein for renal patients includes tofu, peanut butter (no more than two Tablespoons

Vegan Foods That Provide Approximately
7 Grams of Protein Per Serving

Protein Source Serving Size
Seitan (wheat gluten)
Beans, dried/cooked
Tofu, firm
Tofu, regular
Nut Butters
1 oz.
½ cup
1/3 cup
⅔ cup
¼ cup
2 Tablespoons

per day), tempeh, and beans. Soy meats, such as textured vegetable protein (TVP) or vegan ground round, are high in quality protein but are also high in sodium, phosphorous, and potassium, which need to be limited. Soy protein has been found to assist in minimizing some complications from kidney disease. Patients should have at least one serving of soy a day, such as soymilk, tofu, or tempeh. Again, it is a balancing act for renal menus - a small amount of soy each day may be beneficial, but too much can be harmful.
Here are some tips for including soy products on your vegan renal menu:
  • Mash a few Tablespoons of regular tofu with croutons and seasonings to 'extend' the tofu and decrease the amount of protein served.
  • Add small chunks of regular tofu-rather than animal protein-to soups, stews, and stir-fries.
  • Use silken tofu instead of vegan mayonnaise in salad dressings, sandwich fillings, and sauces.
  • Crumble up regular tofu, add a spicy seasoning (without salt), and quickly sauté to top rice or pasta, or use as a filling for a taco or burrito or to top a pizza crust.
Beans and nuts are good sources of high-quality protein. However, they can be high in phosphorus and potassium, so the amounts served need to be carefully calculated. Try to use dried beans or beans frozen without salt. Canned beans, even lower sodium beans, are usually high in sodium. A way to balance potassium intake is to include needed protein (which may be high in potassium) and then to select fruits and vegetables that are lower in potassium.


Some vegetarian foods can be very high in sodium. Here are suggestions for avoiding excess sodium on the menu:
  • Avoid using ready-to-eat foods, such as frozen meals, canned soup, dried soups, or packaged vegetable broths.
  • Use miso very sparingly.
  • Use lower-sodium soy sauces very sparingly, as there is still a lot of sodium in these soy sauces.
  • Limit soy- and rice-based cheeses.
  • Amino acid preparations, such as Bragg's Liquid Aminos, can be very concentrated in protein, potassium, and phosphorus; if the patient wants to include these types of products, they will need to be calculated into the daily intake.
  • Read the labels for vegan meats (such foods as tofu hot dogs and veggie burgers) or other canned or frozen soy products.
  • Read the labels for seasoning mixtures to avoid excess sodium.


Potassium may not need to be strictly restricted unless the function of the kidney decreases to less than 20 percent. Routine blood testing is the best way to know a patient's potassium requirements. Approximately two-thirds of dietary potassium comes from fruits, vegetables, and juices. The easiest way to limit potassium would be to limit fruit and vegetable selections based on the level of potassium in the patient's blood.

Higher Potassium Foods

Textured vegetable protein (TVP)
Soy flour
Nuts and Seeds
Cooked dried beans or lentils
Cooked dried soybeans
Tomato products (sauce, pureé)
Oranges, bananas, cantaloupe, or honeydew melon
¼ cup
2 Tbsp
¼ cup
1/3 cup
1 cup
¼ cup
½ cup
¼ cup
½ cup

A common limitation is five servings of fruits and vegetables per day. A potassium serving size is generally:
  • 1/2 cup fresh fruit, canned fruit, or juice
  • 1 cup fresh vegetables
  • ½ cup cooked vegetables
If a patient would like several servings of protein, alternative protein selections may be needed to keep potassium levels from going too high. This will mean using more tofu and seitan, rather than beans or textured vegetable protein (TVP), at every meal. Blackstrap molasses, spinach, Swiss chard, beet greens, and prunes are very high in potassium and may need to be limited or avoided.


Depending on the extent of an individua's kidney disease, phosphorus may need to be restricted. Foods high in phosphorus include bran cereals, wheat germ, whole grains, dried beans and peas, colas, beer, cocoa, and chocolate drinks. For more information about high phosphorus foods, see www.kidney.org/atoz/ atozitem.cfm?id=101. Dried beans and peas and whole grains are high in phosphorus, but because of their high phytate content, they may not cause phosphorus in the blood to be elevated as much as would be expected. Individual monitoring by the health care provider is necessary to determine the appropriate level of dietary phosphorus.

Adequate Nutrition

A vegan diet can be lower in calories and higher in fiber than an animal-based diet. This is great news for healthy patients. However, for vegan renal patients, we need to ensure that there is no weight loss or loss in nutritional status. Here are some tips for adding more calories to a vegan renal diet:
  • Make shakes with soymilk, tofu, rice milk, and non-dairy frozen dessert. Some patients, especially those with very limited kidney function, may need to use unfortified soymilk or rice milk and unfortified soy yogurt.
  • Use more oils, such as olive oil in cooking. Drizzle flaxseed oil on food after it is cooked, or mix with salad dressing and serve over lettuce.
  • Provide frequent small meals if patients feel full very quickly.
  • Even though sugar is not the best selection in a diet, for a renal patient who needs extra calories, sorbet, vegan hard candy, and jellies may be added.

Additional Ideas When Planning Vegan Renal Menus

  • Avoid using salt or salt substitutes. Use herb mixtures, such as Mrs. Dash, or mixtures you create yourself with fresh or dried herbs.
  • If you need to use canned broths, purchase the lowest-sodium version possible.
  • Use fresh or frozen (without salt) fruits or vegetables when possible.
  • Lower potassium fruits and veggies include wax beans, green beans, kiwi, watermelon, onions, head lettuce and Romaine lettuce, bell peppers, pears, and raspberries.
  • Lower phosphorus foods include sorbet, unsalted popcorn, white bread and white rice, hot and cold rice cereals, pasta, cold corn-based cereal (such as Corn Flakes and Corn Chex), Cream of Wheat hot cereal, and grits.

Sample Menu to Get You Started

  • Cream of Wheat or cream of rice cereal with a small serving of fresh or thawed frozen peaches and cinnamon
  • White toast with a choice of two fruit jellies
  • Pear cocktail
Mid-Morning Snack
  • Popcorn tossed with a very small amount of nutritional yeast
  • Sparkling water with lemon and lime
  • Raspberry popsicle
  • Angel hair pasta topped with chopped mushrooms, broccoli, and nutritional yeast
  • Tossed green salad with chopped bell peppers (red, yellow, and green for color) and silken tofu salad dressing
  • Garlic bread made with fresh chopped garlic and olive oil
  • Sorbet served with cookies
Mid-Afternoon Snack
  • 1 small tofu taco on flour tortilla
  • Sparkling water with a kiwi slice
  • Stir-fried seitan or tempeh tossed with onions and cauliflower, served on a bed of herbed rice
  • Onion dinner roll served with nonhydrogenated vegan margarine
  • Chilled watermelon slices
Evening Snack
  • Small soymilk shake

Icy Smoothie

(Serves 4)
  • 2 cups soft silken tofu
  • 3 cups ice
  • 2 Tablespoons coffee powder or green tea powder
  • 2 teaspoons vanilla extract
  • 2 Tablespoons rice syrup
Place all ingredients in a blender and process until smooth and thick. Serve immediately.
Total calories per serving: 109 Fat: 3 grams
Carbohydrates: 13 grams Protein: 6 grams
Sodium: 24 milligrams Fiber: <1 gram
Potassium: 255 milligrams Phosphorus: 75 mg

Hot Spiced Cereal

(Makes approximately 1 quart or four 1-cup servings)
  • 4 cups water
  • 2 cups cream of rice or other hot rice
  • cereal, grits, or Cream of Wheat
  • 1 teaspoon vanilla extract
  • ¼ cup maple syrup
  • 1 teaspoon powdered ginger
Bring water to a boil in a medium pot. Whisk in cereal and lower heat. Continue to stir until mixture is smooth. Reduce to a simmer. Stir in remaining ingredients. Allow to cook, stirring, until desired texture is attained.
Total calories per serving: 376 Fat: <1 gram
Carbohydrates: 85 grams Protein: 5 grams
Sodium: 7 milligrams Fiber: <1 gram
Potassium: 166 milligrams Phosphorus: 108 mg

Lemon Hummus

(Makes approximately 1 pint)
This spread is higher in phosphorus and potassium than other spreads, but it is a good source of protein.
  • 2 cups cooked garbanzo beans
  • 1/3 cup tahini
  • ¼ cup lemon juice
  • 2 minced garlic cloves
  • 1 Tablespoon olive oil
  • ½ teaspoon paprika
  • 1 teaspoon parsley flakes
Place garbanzo beans, tahini, lemon juice, and garlic in a blender or food processor. Blend until smooth. Transfer mixture to a serving bowl. Drizzle olive oil over the mixture. Sprinkle with paprika and parsley. Serve with pita triangles or unsalted crackers.
Total calories per serving: 72 Fat: 4 grams
Carbohydrates: 7 grams Protein: 3 grams
Sodium: 4 milligrams Fiber: 2 grams
Potassium: 88 milligrams Phosphorus: 75 mg

Corn and Cilantro Salsa

(Serves 6-8)
This is an unusual twist on the usual salsa recipe.
  • 3 cups fresh white or yellow corn cut from the cob
  • ½ cup chopped cilantro
  • 1 cup chopped sweet onions (such as Vidalia or Maui)
  • ½ cup chopped fresh tomato
  • 4 Tablespoons lemon or lime juice
  • ¼ teaspoon dried oregano
  • 2 teaspoons chili powder or red pepper flakes
Place corn in a medium-sized bowl. Add remaining ingredients and mix well. Cover and refrigerate for at least one hour prior to serving.
Total calories per serving: 89 Fat: 1 gram
Carbohydrates: 21 grams Protein: 3 grams
Sodium: 9 milligrams Fiber: 3 grams
Potassium: 270 milligrams Phosphorus: 72 mg

Mushroom Pockets

(Serves 6)
Here's a tasty vegetarian version of soft tacos.
  • 2 Tablespoons water
  • 2 Tablespoons lemon or lime juice
  • 1 Tablespoon vegetable oil
  • 2 minced garlic cloves
  • 1 teaspoon ground cumin
  • 1 teaspoon crushed dried oregano
  • 3 cups thinly sliced fresh mushrooms, such as portobello caps, white button, or brown crimini
  • 1 cup thinly sliced bell pepper
  • ½ cup chopped scallions (white parts only)
  • 3 Tablespoons shredded vegan soy cheese
  • Six 7-inch flour tortillas
In a large bowl, mix water, juice, oil, garlic, cumin, and oregano. Add mushrooms, peppers, and scallions. Stir to coat. Allow to marinate for at least 30 minutes. If desired, this can be done the day before.
Heat a large saut&3acute; pan. Sauté vegetable mixture with marinade until the peppers and scallions are soft, approximately 5-7 minutes. Allow to continue cooking until most of the liquid has evaporated.
While veggies are cooking, wrap tortillas in a paper towel and heat in a microwave, or wrap in foil and heat in a 350-degree oven.
Place each tortilla on a plate. Spoon on vegetable mixture and top with cheese.
Total calories per serving: 147 Fat: 5 grams
Carbohydrates: 23 grams Protein: 4 grams
Sodium: 262 milligrams Fiber: 1 gram
Potassium: 267 milligrams Phosphorus: 64 mg

Fruit Cobbler

(Serves 8)
  • 3 Tablespoons melted nonhydrogenated vegan margarine
  • 1 cup all-purpose unbleached flour
  • ¼ teaspoon salt
  • 1 teaspoon baking powder
  • ½ cup rice milk
  • 3½ cups pitted fresh cherries*
  • 1¾ cups white vegan sugar, divided
  • 1 Tablespoon cornstarch
  • 1 cup boiling water
Preheat oven to 350 degrees.
In a medium-sized bowl, combine margarine, flour, salt, baking powder, and rice milk and mix just to combine.
In a separate bowl, toss cherries with ¾ cup sugar and place cherries in the bottom of an 8-inch square pan. Place dough in small pieces over cherries to cover cherries in an even pattern.
In a small bowl, combine remaining sugar and cornstarch. Whisk in boiling water. Pour cornstarch mixture over the dough. Bake for 35-45 minutes or until bubbly. Serve warm or cold.
Note: You can use thawed frozen pitted cherries; peeled and cored fresh pears; or fresh or thawed frozen raspberries to replace a part of or all of the fresh cherries.
Total calories per serving: 315 Fat: 5 grams
Carbohydrates: 68 grams Protein: 2 grams
Sodium: 170 milligrams Fiber: 2 grams
Potassium: 159 milligrams Phosphorus: 87 mg

quinta-feira, 29 de setembro de 2016



Saiba o que são e quais deles são indicados para veganos

iogurte vegetalO termo Probiótico deriva do grego e significa “pró-vida”, sendo o antônimo de antibiótico, que significa “contra a vida”.
A definição mais atual de probióticos é: suplemento alimentar, rico em microorganismos vivos, que afeta de forma benéfica seu consumidor, através da melhoria do balanço microbiano intestinal.
Vários microorganismos são reconhecidos como probióticos. As mais conhecidas bactérias que exercem essas funções no organismo são as Bifidobacterium e Lactobacillus.
As espécies de probióticos mais utilizadas são:
– Especialmente o Lactobacillus acidophillus
– Lactobacillus casei
– Lactobacillus rhamnosus
– Lactobacillus reuterii
– Enterococus faecium
– Bifidobacterium adolescentis
– Bifidobacterium breve
– Bifidobacterium bifidum
– Bifidobacterium infantis
– Bifidobacterium longum
Os alimentos Probióticos aumentam de maneira significativa o valor nutritivo e terapêutico dos alimentos, pois ocorre maior produção e absorção de vitaminas do complexo B e aminoácidos fundamentais ao sistemas imune e neurotransmissor; aumentam a absorção e fixação de cálcio e ferro, além de outros minerais;fortalecem o sistema imunológico através de maior produção de células protetoras (portanto na redução do risco de câncer e doenças infecciosas de repetição); possuem efeito funcional benéfico no organismo, equilibrando a flora intestinal, atuando na capacidade do organismo se desintoxicar de excessos e venenos.
Como microorganismos, os probióticos normalmente são termo-sensíveis e têm pouco tempo de vida, por isso mesmo, devem ser mantidos bem refrigerados. Ao serem ingeridos, integrados aos alimentos, vão para o intestino e ali se integram à flora já existente, sem se fixarem, mas auxiliando no trabalho de absorção dos nutrientes.
Os probióticos veganos são:
– Alimentos fermentados, como:  kefir, picles, misso, tempeh e chucrute;
– Probióticos em forma de pó ou cápsulas, cultivadas em açúcar (maltodextrina ou fruto-oligossacarídeos). Podem ser encontrados em lojas de produtos naturais e farmácias (tenha especial atenção à forma de cultivo, pois alguns dos probióticos mais comuns são cultivados em lactose). Esta é forma mais benéfica ao organismo, já que contém 100 a 1000 vezes maior concentração de bactérias do que a contida num alimento fermentado.
Os probióticos encontrados na forma de cápsulas ou pó podem ser consumidos diretamente, diluídos em água ou suco, ou adicionados a leites e queijos vegetais, onde os deixamos fermentar, criando assim uma alternativa vegana para os laticínios.
Não há uma regra para a fabricação caseira destes alimentos, sendo que a quantidade utilizada e qualidade da fermentação vai variar de acordo com a composição do probiótico e tipo de alimento a ser fermentado. Alimentos derivados de soja são os mais facilmente fermentados, pois a soja é rica em proteínas.
Para a utilização com finalidade de fermentação de alimentos veganos, é importante que haja entre elas ao menos uma das bactérias mais comuns para fermentação na composição: bulgaricus, acidophilus ou thermophilus.
Referências: Doce Limão


Iogurte vegano de leite de coco

iogurte de coco veganoIngredientes

400 ml de leite de coco
1 xícara de água
1 envelope ou 2 cápsulas de probióticos
3 colheres (chá) de óleo de coco ou de linhaça
1 colher (chá) de agar-agar
2 colheres (sopa) de açúcar ou néctar de agave (opcional)


Em uma panela, misture o leite de coco (pode ser leite de coco de garrafa ou caseiro), a água e o agar e leve para aquecer em fogo baixo por 3 minutos. Aguarde amornar à temperatura de 45 graus. Caso não tenha termômetro culinário, teste com a ponta do dedo. Quando suportar mergulhar a ponta do dedo e contar até 10, está adequado. Misture o óleo de coco, o açúcar e por último o probiótico (que use açúcar no cultivo de bactérias – geralmente maltodextrina). Despeje em um vidro esterilizado e coloque em bolsa térmica ou envolto em panos num ambiente mais aquecido, sob a luz do sol (não muito intensa) ou dentro do forno. Deixe fermentar de 8 a 12 horas, e leve à geladeira.  Se desejar, adicione coco ralado. Também pode ser feito sem adoçantes.
O iogurte fica mais espesso com o passar de 2 a 3 dias em geladeira. Consuma em até 5 dias.

como fazer rejuvelac

segunda-feira, 26 de setembro de 2016



Miso 3° round

Olá pessoal.

bem, como havia dito antes, coisa é maravilhosa esta tal de autonomia.

enfim algumas fotinhos (tiradas pela Chris) do miso já pronto
e cheirando maravilhosamente "vivo".

Aqui o misterioso Miso,
lembrem-se não deve haver ar dentro do pote,
aqui neste caso, queimei o ar com um pedacinho de algodão embebido em álcool.

e já passei para outros recipientes.

Só podia estar sorrindo né!

E que aroma delicioso e doce (embora tenha sal até as tampas).

...ahhh, o sabor é inigualável ao comprado no super, aliás, nunca mais compro miso de supermercado.


Agora, é tentar fazer as outras variações de miso, mais escuro e com outros grãos,

(só um adendo, tem uma garrafa fermentando shoyu, só que este leva mais tempo, aliás muito mais, contudo o tamari retirado no processo é pra demais de bom tbm.)

Beijão no coração de todos e agradecimentos ao Alam e a Inês,
bem como a Enciclopédia Google.


Miso 2° round ( e orientações de Inês)

(Edu) - Bem pessoal, após minha primeira desistência na elaboração do miso no inverno passado (sem condições técnicas adequadas - um frio de lascar)
(Inês) - Sim, no inverno acho que nao da certo. Mesmo no Brasil , em dias quentes, a gente ainda poe cobertor termico para manter a temperatura quentinha a noite toda...
Há 5 dias atrás comecei minha segunda tentativa rumo ao miso caseiro.
Como na última vez, não rolou por causa do frio (o koji não dava certo),
resolvi estudar mais e tentar no verão.
Desculpem, não há fotos pra mostrar (ainda estou sem câmera).

Eu havia congelado parte da amostra de koji que a Inês e o Alan me enviaram,
então parti delas.

Como o arroz japonês aqui em Floripa é muiiito caro,
e estudando vi que o fungo, pode ser cultivado em qualquer tipo de arroz e trigo.

Então, fiz minhas experiências.


Lavei bem e deixei da noite pro dia o arroz integral (cateto branco) de molho em água.
Dia seguinte, cozi no vapor o arroz no fogão a lenha por mais ou menos duas horas.
Após cozido coloquei o arros em um recipiente de plástico, tendo o fundo forrado com tecido de algodão limpo. Deixei esfriar até uns 35 a 40 graus, misturei umas gotas de limão (o arroz deve ter uma leve acidez para o fungo se proliferar bem) e misturei a amostra de koji.
Após misturado, cobri com outro tecido limpo e fechei o recipiente.
Coloquei o recipiente dentro de uma caixa de isopor pra manter a temperatura.
(a temperatura deve se manter em 30 graus).
(Inês) - Pode ser mais alta a temperatura. Pode-se por esta massa de koji numa mesa, em cima de um lencol, embrulha-lo, cobrir com cobertor termico (40 graus) e cobrir tambem com um cobertor para manter a temperatura. Eh importante nao baixar a temperaturaManter sempre quentinho.. Este lencol pode estar em cima de uns papeloes grossos, para manter a temperatura. Normalmente a gente acorda de madruga para ver a temperatura se esta o.k. Que nem um bebezinho, ver se esta tudo bem !
Em 3 dias, ir sempre observando dentro. O koji vaiu florindo, vai florindo. Vai formando grumos de fungos...

Dia seguinte fui bisbilhotar; havia umidade no recipiente (perfeito é assim mesmo), e o processo de fermentação pelo fungo já havia começado (estava quentinho).
Outro dia depois o fungo branco espalhado, abri a tampa do recipiente (do plástico) e mantive ele dentro da caixa de isopor fechada.
Já estava pelo ar um cheiro bom e doce.
Terceiro dia depois, abri a caixa e um estonteante cheiro doce de algo a fermentar espalhou pelo ar, que maravilha que coisa deslumbrante. Coloquei o novo koji (este arroz fermentando) pra secar em novo pano limpo e seco (o dele estava muito molhado).


Deixei a soja de molho em água da noite pro dia,
e coloquei a cozinhar no fogão a lenha até adquirir uma textura de purê ao se amassar com os dedos ou colher. Deixei a soja descansar por algumas 3 horas, depois aqueci novamente.
Escorri, e comecei a macerar a soja ainda quente até virar um purê, (pode-se passar por um espremedor ou moedor de carne), eu fiz na mão mesmo. (não é necessário triturar tudo, podem ficar algumas partículas pequenas.
(Inês) - Eu particularmente gosto bem cremoso, sem pedacos. Acho que o misso fica mais gostoso !
Feito isso, misturei esta pasta de soja, com o koji seco (ou pode ser mesmo úmido depois de feito, mas haja sincronia, por isso preferi seca-lo antes) e também o sal (preferencialmente para homogeneizar melhor, misture o koji com o sal antes).
E amasse, amasse, amasse, misturando tudo como uma massa de pão.
Pode-se (ou deve-se, sei lá) colocar um pouco do caldo do cozimento da soja, se a pasta ficar muito dura de amassar (eu coloquei 250 ml), e um pouco de bebida destilada (coloquei cachaça mesmo 1/5 de copo americano).
Depois coloque essa massa misturada, dentro de um recipiente limpo e sem bolhas de ar.
(pode ser um balde, saco plástico grosso e ou vaso cerâmico, eu preferi um saco plástico dentro de um balde pequeno).
Não deixe nenhuma bolha interna na massa, esprema-a bem.
Depois cobri a massa toda com sal (uma camada fina para evitar contaminação exagerada na superfície) e fechei o saco (sem deixar ar dentro).
Coloque um prato sobre o plástico e peso (pode ser pedras mesmo).
Anote a data no balde, para saber quando foi feito.
Agora é esperar pelo menos uns 5 meses aqui no brasil que tá um calor medonho, se for perto do inverno esperar uns 6 a 8 meses.

Quantidades que usei:

a) koji original – um copo americano e meio.
b) 15 gotas de limão.
c) arroz integral - ½ Kg.
d) soja - 1 Kg.
e) sal – 200 gramos.
f) caldo de soja – 250 ml.
g) cachaça – 1/5 de copo americano.

Edu Engler

Eh isso ai. Super beijos,



・soja 1.3kg
・koji 1.3kg
・sal marihno 500g

A solja deve estar de molho por uma noite. A quantidade de água é o triplo da quantidade da soja. Cozinhar por 8 -10 horas. Se amolecer o tanto que se consegue macerar com leve toque de dedos, OK. E deixar descançando por uma noite. Os grãos de soja vão reabsorver uma parte dos elementos que ficaram no caldo, ficando com com cor levemente escura.
enquanto esta cozinhando a soja faz a mistura de koji com sal deixando a homogenea

a soja cozida e descansada por uma noite deve ser reaquecida durante 20-30min.
usar uma concha perfurada para tanspor tar para outro recipiente onde vai fazer a maceração.
atenção para a quantidade de agua quando vai macerar.

macerar enquanto está quente.

chegando a esse estado está OK. não ha necessidade de macerar completamente. pode sobrar alguns pedaçõs do grão.

transportar par outro recipiente。

misturar o koji ja com sal marinho

fazer bolotas. eliminar o ar do interior da bolota

a quantidade total dá isso mais ou menos

prepara um balde com saco plático espesso em dupla camada e jogar com força dentro do saco. isso é para eliminar o ar do interior.

pressionar com a mão.

amarra o saco platico eliminando totalmente o ar do interio do sacp platico

colocar o peso de 2kg. pode ser usado pedrinhas acondicinado num saco

anotar a data e esperar por 8-9 meses

receita do caderno da ines

a) arroz jopones - 2,5 Kg
b) soja - 5 Kg
c) sal - 2,0 Kg
d) caldo de soja - 2,5-3,0 Lt
e) saque ou pinga - 1/8 copo

preparo do koji
- na tarde do dia anterior lavar o arroz e deixar de molho
- no dia seguinte, escorrer o arroz e conzinhar no vapor (sem água por + ou - 2 horas)
- preparar o quarto com pano e espalhar este arroz por cima do pano
- quando o arroz estiver com mais ou menos 40C de temperatura espalhar o "koji"
- cobrir com pano grosso (pode ser pano fino + cobertor em cima), por cima de tudo cobrir com plastico.
- deixar por uma noite
- de manhã o plastido deve estar suado. se não estiver quente, deixar mais 1/2 dia
- tirar só o plastico e deixar o pano grosso

preparo da soja
- cozinhar a soja que ficou de molho desde o dia anterior
- a soja deve estar bem lavada antes de cozinhar
- tempo de cozimento: 8 a 10 horas
- macer (ou moer) com moedor de carne enquanto esta quente

preparo do misso para curtimento
- misturar a soja + koji e acrescentar o caldo + pinga dentro de um balde
- cobrir com um platico a sua superficie